CCCLXXII.—The Crystal Structure of Silver Subfluoride.

By HENRY TERREY and HUGH DIAMOND.

THE peculiar valency relationships existing in sub-compounds make it desirable to establish conclusively the existence of these substances as definite chemical individuals, and for this purpose X-ray methods appear to yield the most promising results (compare Levi, Gazzetta, 1924, 54, 598). Silver subfluoride, Ag,F, one of the most interesting and well-defined of these compounds, was chosen for investigation in this manner, but a specimen of the substance prepared by Wöhler's method (Z. anorg. Chem., 1912, 78, 242) vielded unsatisfactory X-ray photographs in which the presence of silver lines indicated the heterogeneity of the sample. However, since the commencement of this work, Hettich (ibid., 1927, 167, 70) has prepared large crystals of silver subfluoride electrolytically and demonstrated its chemical entity by an X-ray comparison of his product with silver and with the normal fluoride. Hettich's method of preparation was therefore adopted by us, and our main object was then confined to the elucidation of the crystal structure of silver subfluoride as revealed by its X-ray diffraction pattern.

Silver subfluoride crystals, prepared by electrolysing a concentrated solution of silver fluoride at 60° with a low current density, were washed with alcohol and ether and dried in a vacuum (Found : total Ag, 91.5; soluble Ag, 45.1; F, 8.0. Calc. : total Ag, 91.9; soluble Ag, 45.95; F, 8.1%).

A comparison photograph of silver subfluoride and sodium chloride was obtained by the powder method of Debye-Scherrer and Hull, a Shearer tube fitted with a copper anticathode being used as a source of X-radiation. The results of measurements made upon this photograph are given in Table I, the calculated values of d_{hkil}/n being based on a hexagonal lattice of side 2.989 Å.U. and height 5.710 Å.U., which was deduced from the observed values of the interplanar spacings by means of Hull's plots (*Physical Rev.*, 1921, **17**, 549). One molecule of Ag_2F in a cell of these dimensions requires a density of 8.78, whereas the experimentally determined value is 8.64 (Hettich gives 8.57).

In Table II are recorded measurements made upon a plain silver subfluoride photograph, and the strong lines have been employed for calibration purposes, data from Table I being used. In this way it has been possible to identify the weak lines and thus obtain useful information for intensity considerations.

Sodium chloride.			Silver subfluoride.							
dhkil of	Distance between corre-	Calcu- lated value of	Distance between corre-	Esti- mated value of	Angle of			d_{hkil}/n		Indices
lines.	lines.	radius.	lines.	radius.	renex Ø		Cosec 0.	obs.	calc.	hkil.
			15.575	3.001	15°	38'	3.711	2.857	2.855	0002
2.814	15.525	3.001	10 0.0	0.001	10	00	• • • • •			
		0 00-	$14 \cdot 850$	3.00 0	19	5	3.059	2.355	2.358	1011
1.990	14.075	2.999								
			19.050	0.000	อา	41	9.400	1.017	f 1·918	1012
			13.890	2.999	23	41	2.490	1.917	1.903	0003
1.625	12.925	3.000								
			12.550	$2 \cdot 999$	29	46	2.014	1.551	1.533	1013
			12.350	2.998	30	59	1.943	1.496	1.495	1120
1.407	11.887	2.997							1.950	1014
1.258	10.975	3.010		which coincides with 1.2				1.250	1014	
			10.275	3.007	41	2	1.523	1.173	1.179	2022
1 1 4 0	10.050	9.005	10 -10	0 000		_		-	(1.1.19	1123
1.149	10.020	3.002							(1.045	1015
			8.875	3.009	46	54	1.370	1.054	1.020	1010
0.029	7.995	9.019							(1.032	1124
0.999	1.920	3.013	6.795	2.011	58	1	1.179	0.908	0.908	1125
			0.120	0.011	00	. 1	1 170	0 000	(0.893	1016
0.890 6.325 3.010				which coincides with 0.885					2132	

TABLE I.

TABLE II.

dhkil of standard	Distance between corre-	Calcu- lated value of camera	Distance between corre-	Esti- mated value of camera	Angle of reflexion.		Angle of reflexion.			d _{hkil} /n		Indices
lines.	lines.	radius.	lines.	radius.	θ.	,	Cosec 0.	obs.	calc.	hkil.		
2.855	15.540	2.994								0002		
			15.220	2.993	17°	16'	3.369	2.594	2.590	1010		
2.358	$14 \cdot 820$	2.992								1011		
			$13 \cdot 850$	2.991	23	40	2.491	1.918	1.918	1012		
1.903	13.810	2.991								0003		
			12.470	2.987	30	11	1.989	1.531	1.533	1013		
			12.350	2.986	30	45	1.956	1.502	1.495	1120		
			11.377	2.985	35	24	1.726	1.329	1.325	1122		
			10.955	2.984	37	25	1.646	1.267	1.262	2021		
1.250	10.830	2.984								1014		
1.175	10.970	9.080								∫1123		
1.110	10-270	2.909								12022		
			9.912	2.989	42	30	1.480	1.140	1.144	0005		
			8.695	2.080	48	40	1.339	1.025	f 1·045	1015		
			0.020	2.000	-10	10	1 002	1 0 20	1.032	1124		
			7.775	2.990	52	45	1.256	0.967	{0·978	2130		
			1 1 1 0	2 000	02	10	1 200	0.001	0.964	2131		
0.908	6.675	2.990								1125		
			6.305	2.990	59	47	1.157	0.891	Į 0·893	1016		
			0 000	2 000	50		1 107	0.001	l 0·885	2132		

Silver subfluoride is a hard, metallic-looking substance, not easily reduced to powder in a mortar. It seems probable, therefore, that the atoms of silver and fluorine are closely packed, and the compound would appear to have a "cadmium iodide" structure. This is shown in Fig. 1, in which the large circles denote silver atoms and the small circles fluorine atoms. Fluorine occupies the position (0, 0, 0) and silver the positions $(\frac{1}{3}, \frac{2}{3}, \mu)$ and $(\frac{2}{3}, \frac{1}{3}, \bar{\mu})$. The value of the parameter μ , the distance between successive planes of silver and fluorine atoms, may be deduced from intensity considerations, and for this purpose the relations between the intensities of the various orders of reflexion from the 0001 plane are valuable. It has been possible to obtain crystals with welldeveloped faces parallel to the 0001 plane and also to the 1011 plane, and to record the various orders of reflexion from them. The observed intensities of the first-, second-, and third-order

reflexions from the 0001 plane do not exhibit a normal decline : the second order is stronger than the first, and the third order is stronger than the first but weaker than the second. A weak fifth-order reflexion also occurs. In the case of the 1011 plane only a first-order reflexion is obtained. In Table III an estimated value of the intensity of reflexion is given for each line observed, and intensities calculated for several

values of μ are also given for comparison. The lines have been divided into groups in which each is derived from the same type of plane. Some of the lines are unresolved doublets, and in these cases it has been impossible to assign any definite observed intensity values to the components. The indices of co-operating planes have therefore been inserted after the observed intensity value.

The expression $I = NS^2/\sin^2\theta$, where N is the number of cooperating planes and $S = 10 + 46[e^{i2\pi n(\hbar/3 + 2k/3 + \mu\bar{l})} + e^{i2\pi n(2\hbar/3 + k/3 + \bar{\mu}\bar{l})}]$, has been used in the above calculations.

The most satisfactory agreement between observed and calculated values occurs when $\mu = 0.3$. There is, however, an obvious discrepancy in the case of the 1120 plane, but this could not be eliminated by a change of μ . Apart from this inconsistency, the general similarity of observed and calculated intensities in each

Indices		Intensity calculated for different values of μ .							
of plane	Observed								
hkil.	intensity.	0.1.	0.2.	0.3.	0.4.	0.5.			
(0001	7	385	77	17	217	356			
0002	10	20	56	56	20	143			
/ 0003	9	5	25	43	9	41			
\ 0004		14	5	5	14	35			
0005	2(1124)	15	22	15	22	15			
¹ 0006	` ` `	6	2	2	6	16			
1010	2	110	110	110	110	110			
\ 2020		11	11	11	11	11			
1011	9	300	360	216	0	222			
1012	8	240	0	321	198	43			
1013	3	66	172	11	150	68			
h 1014	7	0	84	102	138	18			
1015	1	32	12	32	12	32			
1016	7 (2132)	68	50	43	12	10			
1120	1	240	240	240	240	240			
1121		137	28	6	78	131			
$^{)}1122$	2	25	73	73	24	187			
) 1123	5 (2022)	4	58	99	14	95			
1124	2(0005)	43	15	15	43	110			
1125	7` '	56	87	56	87	56			
(2021	1	154	81	218	218	53			
1 2022	5 (1123)	71	124	0	90	19			
(2130)	2(2131)	30	30	30	30	30			
$\{2131$	2(2130)	51	34	25	0	13			
(2132)	7 (1016)	51	0	71	42	9			

TABLE III.

group is good, and it is suggested that a "cadmium iodide" structure, with $\mu = app. 0.3$, is fairly representative of silver subfluoride.

When $\mu = 0.3$, the atomic diameter of silver with respect to silver is about 2.8 Å.U. and with respect to fluorine about 3.6 Å.U., and it is significant that these values are equal to the atomic diameters of silver in the metallic state and in normal combination, respectively. This seems to indicate that the relation between adjacent silver atoms resembles that existing in the metallic state, and that the relation between adjacent silver and fluorine atoms is similar to that in normal silver fluoride. Perhaps in the formation of a molecule of subfluoride two silver atoms partly share their uncompleted rings of electrons, leaving between them in reserve an electron to complete the electron ring of a fluorine atom. Tf this be the case, previous hypotheses postulating the existence of "sub-ions" would appear to have some justification, and the metallic properties of silver subfluoride (e.g., electrical conductivity of the order of that of graphite) would find a ready explanation.

Summary.

Silver subfluoride has been examined by the powder method, and found to possess a hexagonal unit cell of dimensions a = 2.989Å.U. and c = 5.710 Å.U. The density corresponds to one molecule in the unit cell. Intensity considerations appear to agree with a '' cadmium iodide '' structure with the parameter μ equal to about 0.3.

In conclusion, one of us (H. D.) wishes to express his grateful thanks to the Salters' Institute for a grant which has enabled him to take part in this research.

THE SIR WILLIAM RAMSAY LABORATORIES OF INORGANIC AND PHYSICAL CHEMISTRY, UNIVERSITY COLLEGE, LONDON. [Received, June 29th, 1928.]